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Abstract. Autonomous driving has recently made impressive strides
in both simulation and real-world performance, especially with end-to-
end methods. However, these models often function as black boxes and
lack explainability. The emergence of large language models (LLMs) of-
fers a potential solution by combining modular autonomous driving with
language explanations. Most recent LLM solutions convert driving in-
put information into languages, which often require manually designed
prompts and perhaps lead to suboptimal information efficiency. Vision
language models(VLMs) can directly extract information from images
but sometimes struggle with tasks involving continuous driving scene
understanding and context reasoning. In this paper, we propose Think-
Driver, a vision-language model that uses multi-view images to generate
rational driving decisions and reasoning processes. Our model assesses
perceived traffic conditions and evaluates the risks of current driving
maneuvers, contributing to rational decisions. Through closed-loop ex-
periments, Think-Driver outperforms other vision-language model base-
lines, producing interpretable driving decisions, which demonstrates its
effectiveness and potential in future applications.

Keywords: Vision Language Model · Driving Risk Assessment · Decision-
Making · Autonomous Driving

1 Introduction

End-to-end autonomous driving methods have become popular and advanced
across various driving scenarios. Despite reducing information loss, these meth-
ods often lack interpretability for their final output. Also, human drivers can
quickly comprehend their surroundings using visual information around the ve-
hicle, assess the risks of current driving behavior, and make reasonable driving
decisions. Such cognitive processes cannot be fully replicated by deep-learning-
based models and end-to-end methods. Recently, large language models (LLMs)
have been explored for tasks in autonomous driving, such as perception, predic-
tion, and decision-making [3] [7] [16], due to their advantages in reasoning ability
and explainability.
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LLMs excel in reasoning and capturing latent representations from textual
input, enabling them to process scene descriptions, generate reasoning, and make
decisions. Recent works have proposed a similar framework incorporating LLMs
with autonomous driving, using text descriptions of environments and vehicles
as input. The LLM-based autonomous driving scheme usually converts sensor
inputs as text modality and combines with the instruction part to guide LLMs to
finish autonomous driving tasks like perception, prediction, and decision. How-
ever, current works with excellent performance largely depend on the great power
of the GPT series models [11] [20], which are time-consuming to request. Also,
these methods require transforming the nearby traffic and vehicle information
into languages that may lose information to some extent and are not as intuitive
as visuals information. Some vision language model(VLMs) methods [6] [12] only
consider the front information of the ego vehicle and ignore other perspectives,
leading to potential risks of final decisions.

To address the mentioned challenges, we propose Think-Driver, a VLM frame-
work designed to understand driving scenes from the vehicle’s six-view cameras,
think at the behavioral level, and ultimately make informed decisions. To achieve
this function, we consider historical visual and decision-reasoning information as
the supplementary input. We fine-tuned vision-language models to enhance the
model’s understanding of visual information from CARLA’s simulation environ-
ment and assess driving behavior risks. With multi-perspective images as input,
our model can complete the entire reasoning process, from scene understand-
ing and collision risk assessment to decision-making. In a closed-loop simulation
environment-LimSim++ [6], our framework also demonstrated competitive driv-
ing performance compared to baselines. Generally, the contributions of our work
are summarized as follows:

-We proposed a VLM-based framework, Think-Driver that takes multi-view
images as input, makes explainable decisions, and learns from the driving expe-
rience.

-Our model systematically evaluates different driving environments, assessing
driving behaviors and forming a thought chain from perception to decision-
making, resulting in well-founded decisions.

-Through closed-loop simulation experiments, Think-Driver outperforms main-
stream VLM baselines in both perception tasks and overall driving performance.

2 Related Works

Most recently, LLM-based autonomous driving has emerged with its satisfying
performance in driving tasks and interpretable solutions. GPT-driver [11] design
prompts covering vehicle and history information, then fine-tune ChatGPT to
get planning results and noticeable objects in the environment, even performing
better than UniAD [9]. Usual formulations of subtasks in autonomous driving
are converted into language-based question answering. DriveGPT4 [22], with
vision transformers(ViT) as vision encoder takes images and videos as input
to finetune Llama2 to generate answers for perception and decision questions.
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DiLU [20] proposed a knowledge-driven framework that makes GPT summarize
and learn from past successful driving experiences in a highway environment.
Nevertheless, it only considers text modality. To fully leverage the great power of
LLMs, more tries on end-to-end autonomous driving frameworks. DriveMLM [18]
and LMDrive [15] consider more modalities including images and point clouds,
with language as instructions, to generate control signals directly, but lack in-
terpretability.

Typical autonomous driving tasks are transformed into vision-based question-
and-answer formats. It also allows for the integration of human driving experi-
ence as prior knowledge. To enhance knowledge and shorten the understanding
gaps, nuSenseQA [13] and nuPrompt [21] provide human perception and un-
derstanding as labels to construct driving-language datasets, which can guide
models to get better knowledge about the real world. DriveLM [16] considers
perception, prediction, and decision problems together and transforms them into
graph question answering to make models implement multi-tasks. DriveCoT [17]
provides and organizes the chain of thought processes for autonomous driving
to think in an organized manner. This not only helps to increase user trust in
the system but also facilitates accountability in the event of a decision.

3 Methodology

In this section, we will illustrate our framework overall and introduce the vision
language model in detail, at the third part how to instruct the model to think
in a chain will be covered.

3.1 VLM-based Framework

We design a knowledge-driven autonomous driving framework with VLMs that
can understand driving scenes and assess driving behaviors. As shown in Figure
1, our framework extracts images around the ego vehicle from the CARLA sim-
ulation environment, specifically from six perspectives: Front-left, Front, Front-
right, Back-left, Back, and Back-right. Additionally, input information includes a
language description of the task and driving instructions, which guide the model
to output appropriate decisions and reasoning processes. Then, Think-driver out-
puts one driving action from a predefined available set of meta-actions, including
Proceed, Acceleration, Brake, Left lane-change, and Right lane-change. After the
model outputs a decision through reasoning, the ego vehicle in the simulation en-
vironment evolves by executing the trajectory corresponding to the meta-action.
Since driving behaviors like lane-changing are temporally continuous, incorpo-
rating historical temporal information helps the model understand the dynamic
surrounding environment. The visual and decision information from the previous
frame is retrieved from memory for better behavior understanding. During each
inference loop, the current frame along with the model’s decisions and reasoning
processes, will be stored and utilized as input for the next model inference.
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Fig. 1: VLM-based Decision Framework: Our model uses visual information from var-
ious perspectives to generate safe and reasonable driving decisions. The simulation
environment updates the next state based on the trajectory corresponding to these
decisions. To enhance the model’s understanding of the temporal aspects of driving
behavior, the VLM input in each iteration includes both the current visual informa-
tion and the decision reasoning from the previous frame extracted from the stored
memory.

3.2 Think-Driver Model

To construct our vision-language model, we follow the vision instruction tuning
format [10] to fine-tune large language models. Mainstream VLMs use Vision
Transformers (ViT) as vision encoders, multi-layer perceptrons (MLP) as pro-
jectors, and large language models as backbones. The key factor for LLMs to
process image tokens is aligning the image data into the language distribution
space.

For image input, we use the pre-trained InternViT [2] as our vision encoder.
This model, pre-trained with Clip techniques [14] on a large amount of image-
text datasets, can map vision features into an image-language distribution space.
Considering the multi-view information input, we introduced the multi-view
visual-text Alignment (MV-alignment) approach. To help the model better un-
derstand the positional information represented by different image perspectives,
we performed encoding and mapping for each view with specific MLPs, the hid-
den feature Fi of each view patch Pi can be computed as defined.

Fi = fMLPi(fV iT (Pi)) (1)
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Fig. 2: Model architecture: Our model takes the surrounding view images and instruc-
tion text as input. The ViT encoders and projection layers will align image patches
of multi-views and the last frame into vision tokens. The instruction text includes the
task definition and the last decision with the reasoning process. With the combination
of image and text tokens, all information is fed into large language models to generate
scene descriptions, thinking processes from nearby traffic and driving behaviors, avail-
able decisions, and reasoning. During the fine-tuning process, the ViT encoder, MLP
connector, and LLM are all tuned with QLoRA techniques.

All MLP parameters and q,k,v of ViTs are trained in this module during the
tuning process. Also, we expanded the model’s vocabulary with specific place-
holders to represent the hidden feature Fi of different perspectives. For instance,
< front_left > stands for the encoded and mapped features of the visual in-
formation from the front-left view of the vehicle. Hence, this approach helps
the VLM model more efficiently utilize visual information and generate accurate
spatial position descriptions. Similarly, we retained the overall image informa-
tion by using < frame > to refer to the features of the stitched images, reducing
potential information loss. This approach ensures that the model captures the
spatial relationships between different viewpoints while maintaining the global
context of the scene. To enable the LLM to differentiate between two frames of
images, we use specially defined language tags to represent historical information
and the current image: < current frame > and < last frame > to represent the
temporal information respectively.

For the textual component, the model tokenizes the constructed prompts into
language tokens with the LLM tokenizer. The image and text tokens are then
combined and fed into large language models, as shown in Figure 2. We utilize
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the advanced open-source LLM, Interlm2-chat, as our backbone language model,
fine-tuning it with Q-LoRA [4], a parameter-efficient method that modifies the
self-attention layers with low-rank matrices to reduce the number of trainable
parameters. During supervised fine-tuning, VQA driving tasks are formatted as
next-token generation tasks. The model generates answer texts autoregressively
by optimizing the cross-entropy function for the answer label. Considering visual
token feature TFi

and text instruction token Tt as input, the loss function can
be defined as:

L(Y, Ŷ ) = −
n∑

j=1

P (Yj) logP (Ŷj |Ŷ1:j−1;TFi
, Tt) (2)

Yj and Ŷj are the j-th label and predicted tokens, with Ŷ1:j−1 as previously
generated tokens.

3.3 CoT Instruction-tuning

Human-like driving involves a sequential and gradual thinking process. A driver
typically observes the surrounding environment—traffic lights, facilities, nearby
vehicles, and pedestrians —before deciding on actions based on traffic rules and
potential collision risks. For future actions, such as changing lanes or follow-
ing another vehicle, the driver also considers possible future changes. Finally,
a decision is made after considering all factors comprehensively. To facilitate
LLM reasoning in such a manner, we incorporate the Chain of Thought (CoT)
mechanism [19], as illustrated in Figure 3, during model fine-tuning.

Fig. 3: CoT Process in Think-Driver: To enhance the thinking abilities based on the
perception information for decision tasks, we fine-tune our model through constructed
CoT-instruction QA datasets under multi-turn dialogue settings. For risk prediction
and decision questions, the model will summarize and reason through generated infor-
mation, and then make a reasonable analysis.
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Fig. 4: Vision-Text Prompt Design: Multi-view images and the historical vision in-
formation are organized with additional text instructions, which include the current
state of the ego vehicle and the last driving experience. System prompts are tailored
to instruct models to leverage their knowledge and generate related descriptions.

The CoT mechanism guides the LLM through step-by-step reasoning: identi-
fying signs, vehicles, and pedestrians in the traffic environment that could impact
vehicle status; assessing collision risks associated with available driving behav-
iors; and determining the most appropriate driving decision. Empirically, this
structured CoT prompt format is tailored to convey diverse driving information
and reasoning processes, boost the model’s comprehension, and refine the analy-
sis accuracy. Each item of prompts is illustrated below, and the complete content
is shown in Figure 4.

– System Prompts. To enhance the integration of LLMs into driving deci-
sion tasks, system prompts are structured with clear task descriptions. Task
settings explicitly outline the role of LLMs and leverage their pre-existing
understanding of the autonomous driving domain.

– Ego vehicle state. The ego vehicle state describes the speed, acceleration,
and location of the ego vehicle at the current frame, which provides direct
information for understanding its driving state.

– Last decision and reasoning. The historical decision and reasoning in-
formation are mentioned for a better understanding of its driving behavior.
Also, the last frame is included and depicted as sign < lastframe >.

We employed a mixed data fine-tuning approach to enable our model to
output all relevant information in a single inference, while maintaining the ability
to handle single-driving task queries. CoT-instruction QA pairs are constructed
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with multi-turn dialogue samples, especially for the reasoning risks- driving risk
assessment and decision with reasoning. Then, we combined single-driving task
QA samples with CoT-instruction QAs to form the fine-tuning dataset. This
approach allows our model to output the reasoning process from perception to
decision-making in a single inference, while also retaining the ability to handle
single driving task queries.

4 Experiments and Analysis

In this section, the dataset and experiment settings are covered in detail. Also,
our model’s performance in the close-loop evaluation and driving case studies
are included for the analysis of the ability of our models.

4.1 Dataset and Training Details

We reconstructed the multi-modal DriveCoT dataset [17], collected from the
Town12 Map in the Carla environment, which comprises various driving scenar-
ios in different environments: Traffic Negotiation, Ahead Vehicle Break, Pedes-
trian Crossing, and Lane Change. Also, it consists of 1058 scenarios with 36k
labeled samples. We adjust the decision labels as four meta-actions: proceed,
acceleration, deceleration, left lane-change, and right lane-change. Considering
that our model only utilizes visual modality inputs, we retained information
about vehicles visible within the RGB cameras, excluding those detectable only
by lidars. The coordinates of nearby vehicles and pedestrians are converted into
state and relative position descriptions to enhance the model’s spatial awareness.
By fine-tuning our model with a reconstructed dataset, Think-Driver gains the
ability to understand driving environment information, reason effectively, and
make decisions. For the model training, the dataset is split into training, valida-
tion, and testing sets at a ratio of 70%, 20%, and 10%, respectively. To fine-tune
our model efficiently, we utilize Q-LoRA to fine-tune the weights of ViT, MLP
projectors, and LLM weights based on 4 RTX-4090s. The model is trained with
10 epochs using AdamW optimizer with the start learning rate 2e-4 and a cosine
annealing scheduler. For model inference in all experiments, we take the zero-
shot settings, leverage the same query prompt, and set the same parameters for
the output of LLMs, with temperature=0.7, max tokens = 1024, and seed=50,
in order to reproduce the results.

4.2 Close-loop Experiments

In this section, we assess our model’s overall driving performance in the simu-
lation environment-CARLA [5], focusing on instruction following, driving effi-
ciency, driving comfort, and safety.
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Experiment settings We take Limsim++ as our closed-loop simulation en-
vironment, which is specifically designed for vision large language models. It
is co-simulated with CARLA and SUMO with abundant city driving scenar-
ios. Here we selected Town06 as our Map and No.50 as the controlled vehicle,
other vehicles are generated in simulation settings. In the close-loop evaluations,
Think-Driver takes the role of the decision-maker of the vehicle. For the limited
speed, 0.1m/s is the lowest value and the max speed is referred to as the road
limit. To compare the performance, we implement 20-time tests for each VLM
to take the average results to evaluate that driving performance. For the driving
actions, we separated driving decisions into several categories, which is more
direct and effective for LLMs to make decisions: "Acceleration" - accelerate the
vehicle; "Deceleration" - decelerate the vehicle; "Proceed" - remain in the cur-
rent lane with current speed; "Turn-left" - change lane to the left of the current
lane; "Turn-right" - change lane to the right of the current lane. Different from
the Limsim++ settings, we considered multi-viewpoints around the vehicle as
visual inputs and adjusted the prompt for each inference accordingly. For other
VLM baselines, we combined the multi-view images into a single image as input
to retain the full range of visual information. This approach allows us to main-
tain comprehensive spatial awareness while tailoring the input to better suit the
model’s reasoning process, potentially improving the model’s performance on
complex driving tasks.

Evaluation Metrics We take the same metric settings as LimSim++, which
cover the route completion, driving scores, and successful rate. The driving per-
formance comprehensively considers route completion R and driving score S.

– Route Completion The route completion R indicates the ratio of com-
pleted route length to total length, shown as:

R =
Lcompleted

Ltotal
(3)

where Lcompleted represent the successful route distance and Ltotal is the sum
of set route distance.

– Driving Score Driving score S consists of assessments of driving efficiency,
ride comfort, and driving safety, which is:

S = αλ1βλ2γλ3(k1rc + k2re + k3rs) (4)

The α, β, γ are penalty terms that are denoted for collision, signal, and speed
violations. Here we choose 0.6,0.7,0.9 respectively.
• Ride Comfort Lateral and longitudinal accelerations, as well as jerking,

are considered for evaluating ride comfort. It can be computed as:

rc =
(Sx(a) + Sx(j) + Sy(a) + Sy(j))

4
(5)

In this equation, Sx(a, j), Sy(a, j) represent the lateral accelerations and
jerks, longitudinal accelerations and jerks.
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• Driving Effciency The controlled vehicle should reach the speed limit
of the road to reach the goal as soon as possible.

re =

{
1.0, if ve ≥ v∗

ve/v
∗, else

(6)

ve is the speed of the vehicle, and v∗ is a value between the average speed
and limited speed.

• Driving Safety For the drive safety part, it is measured by Time to
Conflict(TTC). If the TTC drops below a certain threshold, it indicates
potential risks that require penalties. The method for calculating driving
safety is detailed below:

rs =

{
1.0, if τe ≥ τthrehold

τe/τthrehold, else
(7)

where τthrehold, τe represents the TTC of the threshold and the ego
vehicle.

– Success Rate Success rate Sr represents the number of samples that suc-
cessfully complete the driving task, where the total number of samples is N,
and the number of successful samples is Ns. It is computed as follows:

Sr =
Ns

N
× 100% (8)

Comparison Results In this part, we compare our model with baselines, Llava
series [10] and MiniCPM-V [8], as well as close-source vision-language models
GLM-4V [23], GPT-4v [1], under the same framework. The LimSim++ envi-
ronment executes the corresponding defined trajectories according to the meta-
action generated by VLMs. The comparison results are shown in Table 1.

Models Model Size RC(% ↑) DS ↑ SR(% ↑).

MiniCPM-V2.5 8b 56.7 46.5 55.0
Llava 1.6-Llama3 8b 51.2 48.9 40.0

GLM-4V - 46.4 52.9 25.0
GPT-4V - 57.3 51.6 45.0

Think-Driver 8b 71.3 65.0 90.0
Table 1: Close-loop experiments compared with VLM baselines. RC: Route Comple-
tion, DS: Driving Score, SR: Success Rate. In each evaluation turn, all VLM models
take zero-shot reasoning and output available actions.

From Table 1, we can find that the Think-Driver model demonstrated the
highest performance across all metrics, with a Route Completion Percentage of
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71.3%, a Driving Score of 65.0, and a Successful Rate of 90%. This indicates that
Think-Driver not only excels in following instructions but also maintains a high
driving performance, making it the most robust model among those evaluated.
Trained on CoT datasets, Think-Driver is capable of step-by-step reasoning from
perception to decision, producing well-supported and interpretable behavior de-
cisions. This reasoning process reduces potential collision risks and contributes
to higher driving scores.

4.3 Case Studies

For case studies, we selected two typical driving scenarios to demonstrate the
perception and reasoning abilities of the Think-Driver, as shown in Figure 5.
The organized inference results are listed at the right part of each case. From
two cases, our model can extract surrounding traffic environment information,
as well as the positions of vehicles and pedestrians, from images. Based on this
information, it assesses the potential risks of lane changes and the following
behavior, outputting reasonable driving actions and reasoning processes.

For the traffic negotiation scenario in Figure 5(a), the model accurately deter-
mined the driving behavior of the black car ahead as "exiting the intersection",
through input images and historical temporal information. It also detected the
green traffic light ahead, allowing the vehicle to proceed straight into the intersec-
tion. Considering that there are no traffic conditions ahead affecting the vehicle,
the model suggests that maintaining the current speed and passing through the
intersection is a reasonable choice. For the pedestrian crossing scenario in Fig-
ure 5(b), our model also accurately identified the potential collision risk of a
pedestrian crossing the road ahead, outputting a decision to brake and deceler-
ate.

5 Conclusion and Limitations

In this work, we introduced a novel VLM-based framework, Think-Driver, which
enhances autonomous driving by integrating perception, prediction, and decision-
making into a coherent thought process. This systematic approach improves
adaptability and accuracy in real-world scenarios. Our experiments show that
Think-Driver performs competitively with other VLM baselines, demonstrat-
ing the value of combining VLM with explainable end-to-end methods in au-
tonomous driving. However, there are areas for improvement. Future work could
explore extreme scenarios and long-tail samples to further test the model. Ad-
ditionally, integrating spatio-temporal methods could improve the model’s un-
derstanding of motion and spatial relationships. Exploring outputs like speed,
acceleration, or predicted trajectories could also lead to more precise control.
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(a) Traffic Negotiation: Entering a Cross

(b) Pedestrian Crossing

Fig. 5: Cases Studies for Traffic Negotiation and Pedestrian Crossing Scenarios
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